Localization for random perturbations of periodic Schrödinger operators with regular Floquet eigenvalues

نویسنده

  • Ivan Veselić
چکیده

We prove a localization theorem for continuous ergodic Schrödinger operators Hω := H0+Vω, where the random potential Vω is a nonnegative Anderson-type perturbation of the periodic operator H0. We consider a lower spectral band edge of σ(H0), say E = 0, at a gap which is preserved by the perturbation Vω . Assuming that all Floquet eigenvalues of H0, which reach the spectral edge 0 as a minimum, have there a positive definite Hessian, we conclude that there exists an interval I containing 0 such that Hω has only pure point spectrum in I for almost all ω.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localisation for random perturbations of periodic Schrödinger operators with regular Floquet eigenvalues∗

We prove a localisation theorem for continuous ergodic Schrödinger operators Hω := H0 + Vω, where the random potential Vω is a nonnegative Anderson-type random perturbation of the periodic operator H0. We consider a lower spectral band edge of σ(H0), say E = 0, at a gap which is preserved by the perturbation Vω. Assuming that all Floquet eigenvalues of H0, which reach the spectral edge 0 as a m...

متن کامل

Persistence under Weak Disorder of AC Spectra of Quasi-Periodic Schrödinger operators on Trees Graphs

We consider radial tree extensions of one-dimensional quasi-periodic Schrödinger operators and establish the stability of their absolutely continuous spectra under weak but extensive perturbations by a random potential. The sufficiency criterion for that is the existence of Bloch-Floquet states for the one dimensional operator corresponding to the radial problem.

متن کامل

Internal Lifshits Tails for Random Perturbations of Periodic Schrödinger Operators

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 1. Some preliminary considerations on periodic Schrödinger operators . . . . . . . . 340 1.1. The Floquet decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 1.2. Wannier basis . . . . . . . . . . . . . . . . . . ...

متن کامل

Lifshitz tails for random perturbations of periodic Schrödinger operators

The present paper is a non-exhaustive review of Lifshitz tails for random perturbations of periodic Schrödinger operators. It is not our goal to review the whole literature on Lifshitz tails; we will concentrate on a single model, the continuous Anderson model.

متن کامل

Spectral Properties of Schrödinger Operators with a Strongly Attractive δ Interaction Supported by a Surface

We investigate the operator −∆− αδ(x − Γ) in L(R), where Γ is a smooth surface which is either compact or periodic and satisfies suitable regularity requirements. We find an asymptotic expansion for the lower part of the spectrum as α → ∞ which involves a “two-dimensional” comparison operator determined by the geometry of the surface Γ. In the compact case the asymptotics concerns negative eige...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008